

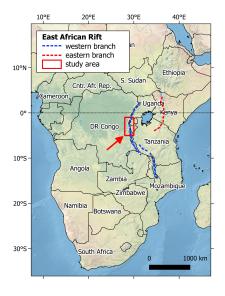
Added value of regional landslide susceptibility analysis the western branch of the East African Rift

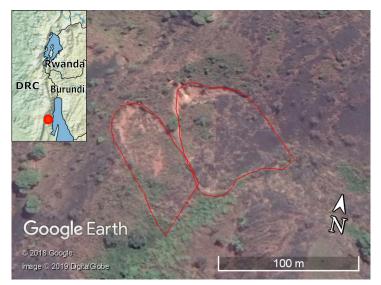
A. Depicker, L. Jacobs, D. Delvaux, H.-B. Havenith, J.-C. Maki Mateso, G. Govers, and O. Dewitte

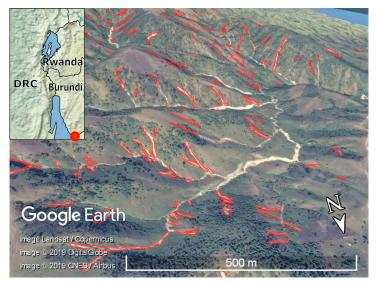
Faculty of Science Department of Earth and Environmental Sciences Division of Geography and Tourism

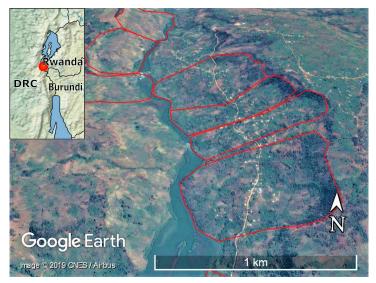
April 11, 2019

Contents


- 1. The western branch of the East African Rift
- 2. Efforts for regional LSS analysis
- 3. Added value of regional LSS models


http://pasteca.africamuseum.be/


- Hazardous
 - earthquakes
 - active volcanism
 - floods
 - storms
 - ...and landslides
- Explosive population growth
- Rapid land cover changes


Old deep-seated landslide near Uvira, the DRC.

Rotational landslides near Katembo, the DRC.

Debris flows near Kalinzi, Tanzania.

Deep-seated rotational landslides near Bukavu, the DRC.

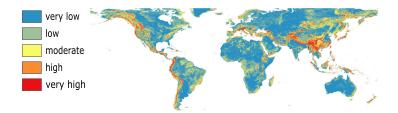
Debris slides in Bucyurabuhoro, Karongi District, Rwanda.

Need for a susceptibility analysis

- Rwanda 2018 (Jan May)
 - 200 deaths
 - 9,974 houses
 - 4,500 ha crops
- "We shall also relocate those living in high-risk zones"
 - PM Ngirente

NEWS - NATIONAL

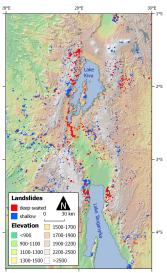
Grief And Horror As Landslide Victims Are Buried In Western Rwanda



Regional

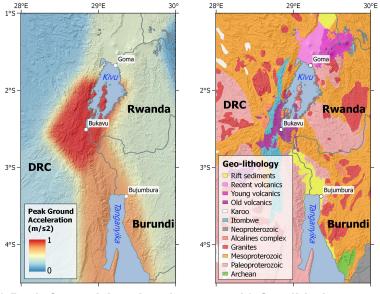
- + high spatial resolution
- + representative inventory
- labor-intensive
 - inventory
 - regional covariates

Global/continental


- low spatial resolution
- global inventory
- + readily available

Stanley and Kirschbaum (2017) A heuristic approach to global landslide susceptibility mapping. *Natural Hazards*.

Inventory



covariates

Theme	Predictor	Units	Res.	Source	
Morphology	Slope	0	1"	SRTM	
	North exposure	-	1"		
	East exposure	-	1"		
	Profile curvature	m ⁻¹	1"		
	Planar curvature	m ⁻¹	1"		
Hydrology	Distance to	m	1"		
riyarology	drainage				
Land cover	Land cover	-	20 m	ESA CCI	
Geology	Geo-lithology	-	1"	_	
	Distance to active	m	1"	Smets et al. 2016;	
	faults			Delvaux et al. 2017	
	PGA	m s ⁻²	2.2 km	Delvaux et al. 2017	

- Regional peak ground accelaration model
- Regional geo-lithology map

covariates

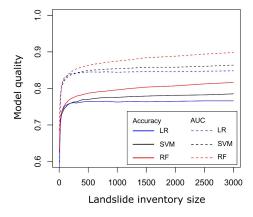
a) Peak Ground Acceleration

b) Geo-lithology

covariates

Central Question

Should we invest the effort in making a regional susceptibility assessment for data-scarce regions when global or continental models are available?


Efforts

Contents

- 1. Relevance
- 2. Efforts for regional LSS analysis
 - minimal inventory size
 - regional covariates
- 3. Added value of regional LSS models

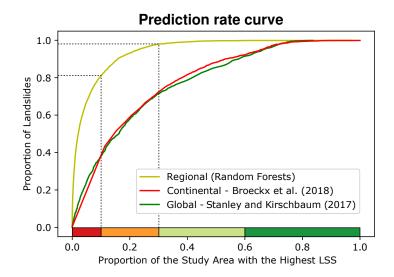
Efforts

Inventory size

- Logistic regression (LR)
- Random forest (RF)
- Support vector machine (SVM)

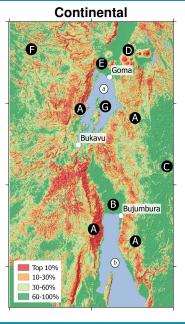
Regional covariates

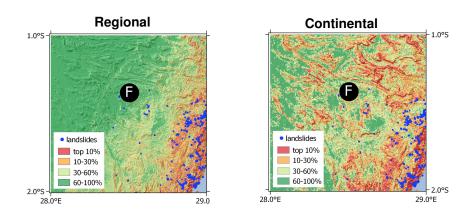
 How is the model quality affected by using global PGA and geo-lithology covariates?

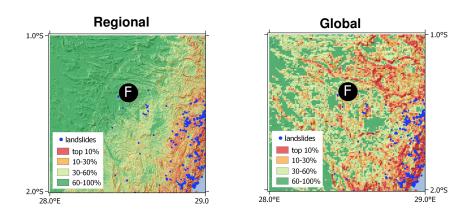

Model	Δ	CC.	AUC	
Logistic regression	77.2	↓ -1.2	85.1	↓ -1.0
Random forest	81.2	↓ -1.0	89.0	↓ -1.4
Support vector machine	78.7	↓ -2.4	86.2	↓ -1.2

Contents

- 1. Relevance
- 2. Efforts for regional LSS analysis
- 3. Added value of regional LSS models
 - model quality
 - plausibility


Scale	Model	AUC
regional	Random forest	90.4
global	Stanley & Kirschbaum (2017)	74.1
continental	Broeckx et al. (2018)	74.8


- Stanley & Kirschbaum (2017). A heuristic approach to global land-slide susceptibility mapping. *Natura Hazards*.
- Broeckx et al. (2018). A data-based landslide susceptibility map of Africa. Earth-Science Reviews.



Regional

Conclusion

• Efforts needed:

- ±500 landslides in inventory
- openly available covariates can be used
- Added value of regional assessment:
 - much higher model quality
 - higher geomorphological plausibility

INVEST IN YOUR INVENTORY!! (But not too much)

Questions?

