The legacy of environmental and societal dynamics on landslide risk in the Kivu Rift

Arthur Depicker¹, Liesbet Jacobs, Nicholus Mboga, Benoît Smets, Anton Van Rompaey, Moritz Lennert, François Kervyn, Caroline Michellier, Olivier Dewitte, and Gerard Govers

Main Menu

Overview of the Kivu Rift

- Reconstruct forest cover changes
 1958-2016
- 2. Link forest cover changes to landslide susceptibility
- 3. Link landslide susceptibility to hazard
- Risk = hazard x exposure x vulnerability
 Conclusion

Click on this figure to get more information!

Kivu Rift

Main menu

Mining industry

- Gold
- 3T minerals
 - Tin
 - Tantalum
 - Tungsten
- Boom during 90s

Fuelwood extraction

 Wood (and charcoal) are an important source of energy for rural and urban households

Deforestation and charcoal production north of Goma, DRC

© Guerchom Ndebo

Food production

 The growing demand for food incites people to cultivate steep terrain

Most of the hillslopes in Rwanda have been converted into cropland

Deforestation increases landslide hazard

- Deforestation alters drainage and decreases soil cohesion as roots decay
- Deforestation increases landslide hazard.
- Potentially, the increased hazard can also exacerbate risk

Deforestation increases landslide activity for a period of roughly 15 years (Depicker et al., 2020 - Interactions between deforestation, landscape rejuvenation, and shallow landslides in the North Tanganyika - Kivu Rift region, Africa)

Afforestation decreases landslide hazard

 Tree plantations and naturally regenerated forests may increase the slope stability

Planted forest in Northern Rwanda

Roads facilitate deforestation

 Road construction unlocks the access to primary forest, facilitating deforestation

Impact of a new road on land cover in the eastern DRC

Population growth

- Exponential population growth since the 60s
- Conflicts increase mobility
- 1 M Rwandan refugees were relocated in the eastern DRC in 1994

Population growth and deforestation between 1958 and 2015. The percentages indicate the average annual forest loss.

Population expands on steeper terrain

- Expansion is driven by
 - Need for cropland
 - Need for fuelwood
 - Mining industry

Population density shifts towards steeper terrain, especially in the eastern DRC

Population faces landslide risk

May 6, 2018. Twenty people were killed by rainfall-induced landslides in Western Rwanda

Landslide along road in Rwanda

1. Reconstruct forest cover changes

- Panchromatic orthomosaic with historical aerial photographs
- Resolution ~ 1 m

next

1. Reconstruct forest cover changes

 Object-based classification techniques to derive forest cover

back next

1. Reconstruct forest cover changes

- Use of 1958, 1988, 2001 and 2016 data to reconstruct annual change
- 2 components:
 - Where does deforestation/afforestation happens? (likelihood)
 - How much of it happens per year? (rate)

1958

1. Where will deforestation happen?

- Deforestation and afforestation likelihood model
- Logistic regression
 - Distance to roads
 - Protected area (0/1)
 - Forest edge (0/1)
 - Deforestation contagion (0/1)
 - Elevation
 - Slope
 - Distance to rivers

1. How much deforestation per year?

- Annual deforestation rate?
 - Doubles evry 20 years
 - Surge after 1994 Rwandan Civil War
- Annual afforestation rate?
 - Assumed constant

Reconstructed deforestation rate. Literature describes a surge in 1994 due to refugee fluxes

2. Link forest cover to landslide susceptibility

- 4,367 shallow landslides
- Logistic regression
- Dynamic land cover variable
 - Includes the 15 year postdeforestation wave

The decline of Gishwati forest is expected to increase landslide susceptibility

1958

3. Link hazard to susceptibility

- Calibrate hazard~susceptibility
- Apply to the annual susceptibility maps

next

3. Link hazard to susceptibility

- Hazard highest in the DRC
- Peak around 2001
- Increase in 1988-2001 due to increased deforestation

4. Risk = hazard x exposure x vulnerability

- No data on vulnerability, but it is assumed high (~1)
- Exposure ~population grids in 1975, 1990, 2000, 2015 (Global Human Settlement Layer)
- Risk highest in DRC, but only partly due to deforestation

Conclusion

- Risk is higher in the DRC
 - Due to deforestation
 - Due to location of people on steeper (hazardous) terrain
 - Refugee influx population growth agricultural expansion
 - Mining sector
- What now?
 - Reduce deforestation and incentives to settle in steep terrain
 - Sensibilization
 - Increase productivity in existing cropland
 - Use alternative energy sources other than fuelwood
 - More efficient use of wood (e.g. better stoves)
 - Rely on forest plantations
 - ...